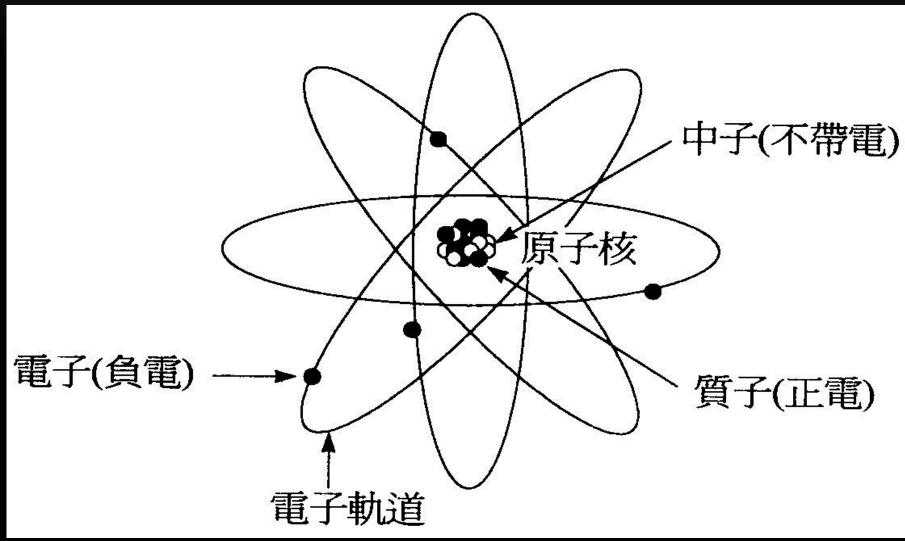
#### <sup>68</sup>Ga PSMA-11放射藥物的調製

姚正祥

#### 林口長庚醫院核子醫學科


08/30/2020

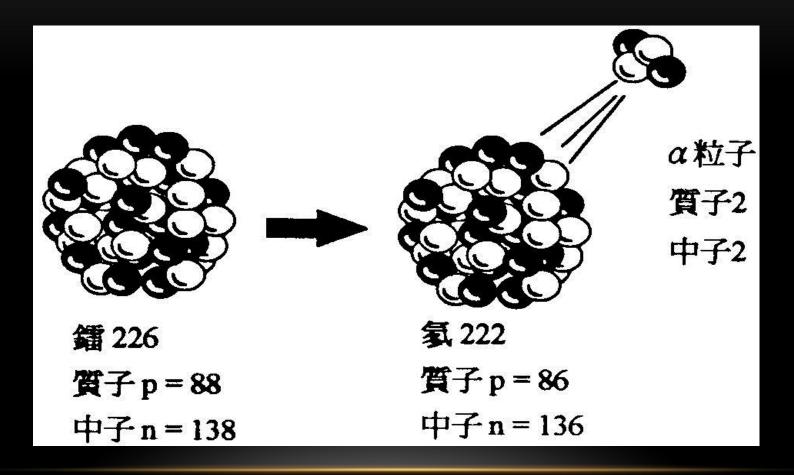
## Outline

- Fundamental nuclear physics
- Radioisotope produce
- <sup>68</sup>Ge/<sup>68</sup>Ga Generator reviews
- <sup>68</sup>Ge/<sup>68</sup>Ga Generator Eluate quality and chemistry
- Chelating agent
- ➢ <sup>68</sup>Ga-PSMA-11 produce

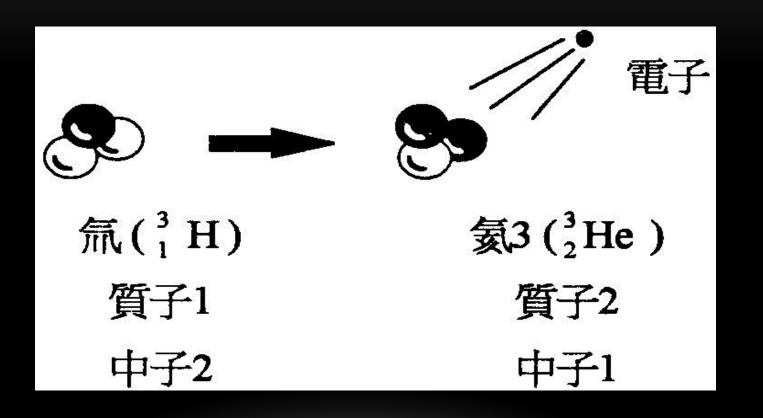
## Fundamental nuclear physics

#### 原子結構示意圖

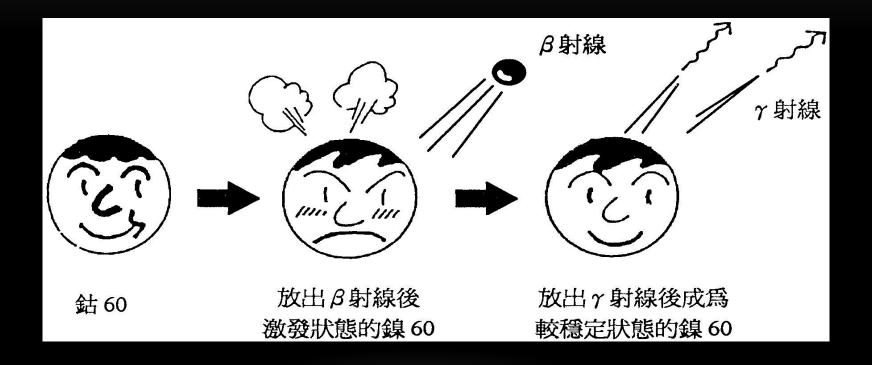



#### Nuclide (核種)

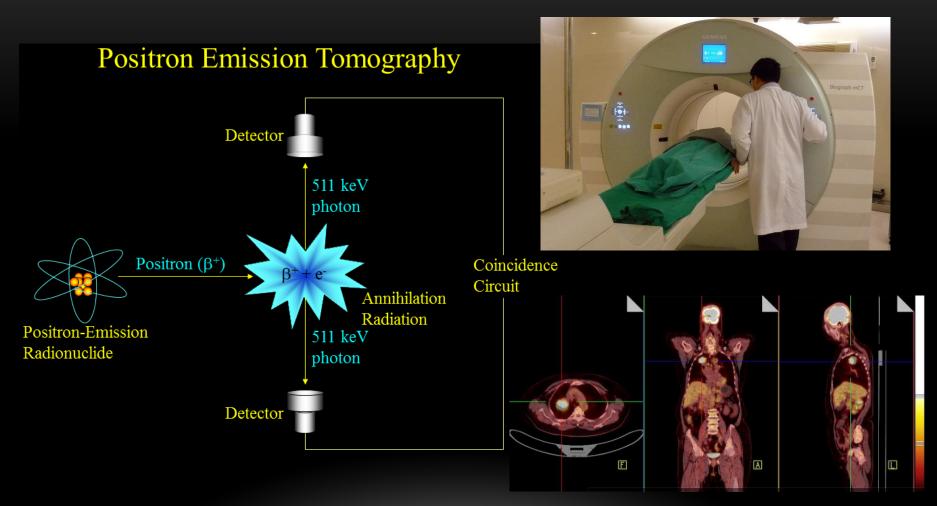
- An atomic species characterized by specific values of the atomic number (*Z*, 原子序) and the mass number (*A*, 質量數)
   Symbolized as Ax (a a 12c 14c)
- > Symbolized as  ${}^{A}_{Z}X$  (e.g.  ${}^{12}_{6}C$ ,  ${}^{14}_{6}C$ )


#### Radionuclide (放射核種)

- An atomic that has excess nuclear energy, making it unstable.
- This excess energy can be released by emitting from the nucleus as γ-radiation or particles (α-particle or β-particle) from the nucleus.

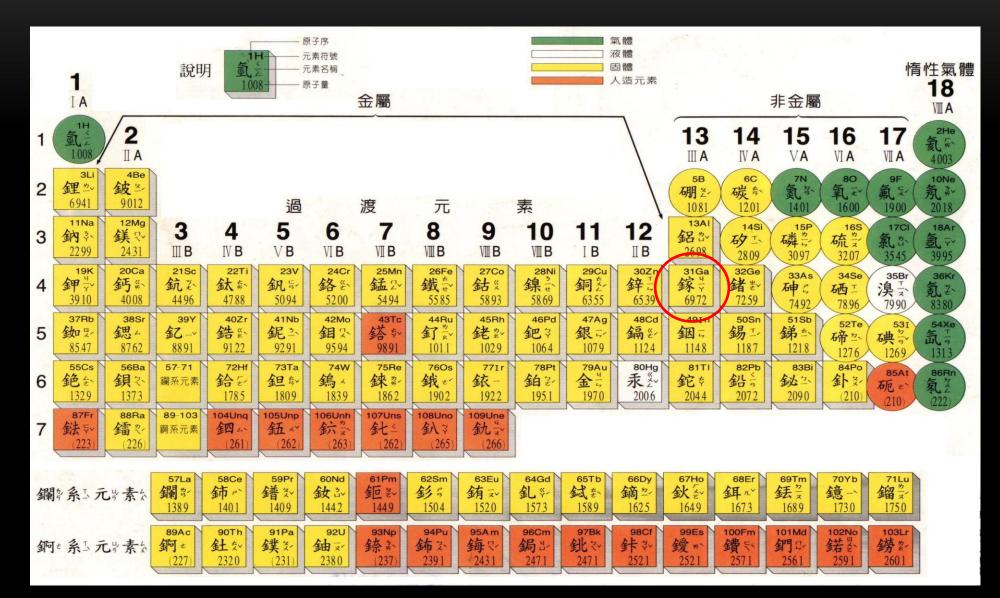

α-粒子輻射




β-粒子輻射



γ-射線



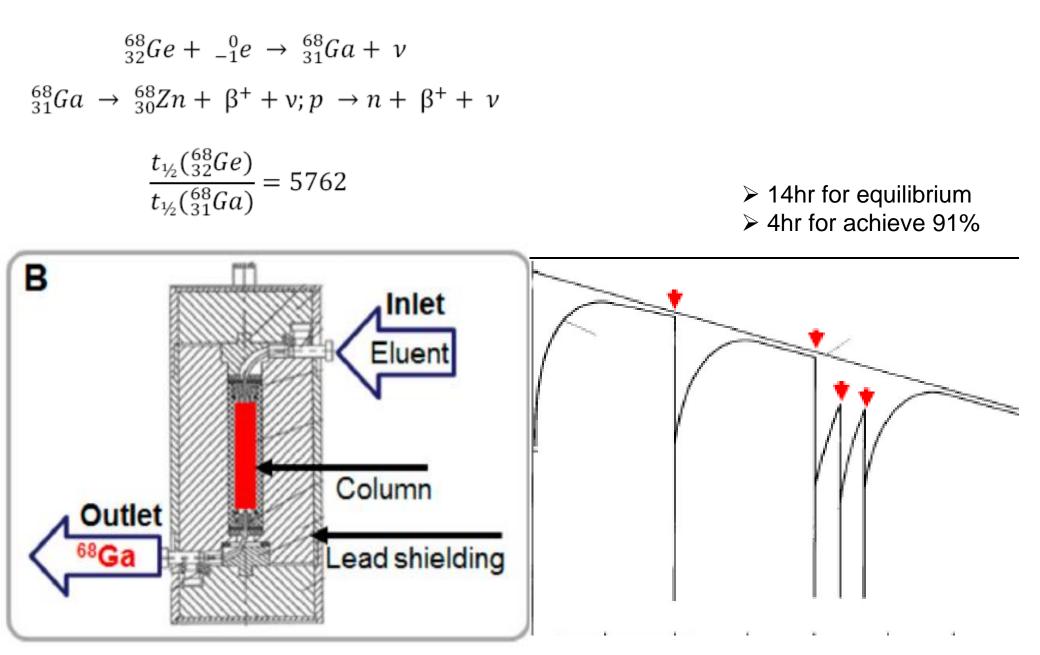

## What is PET?



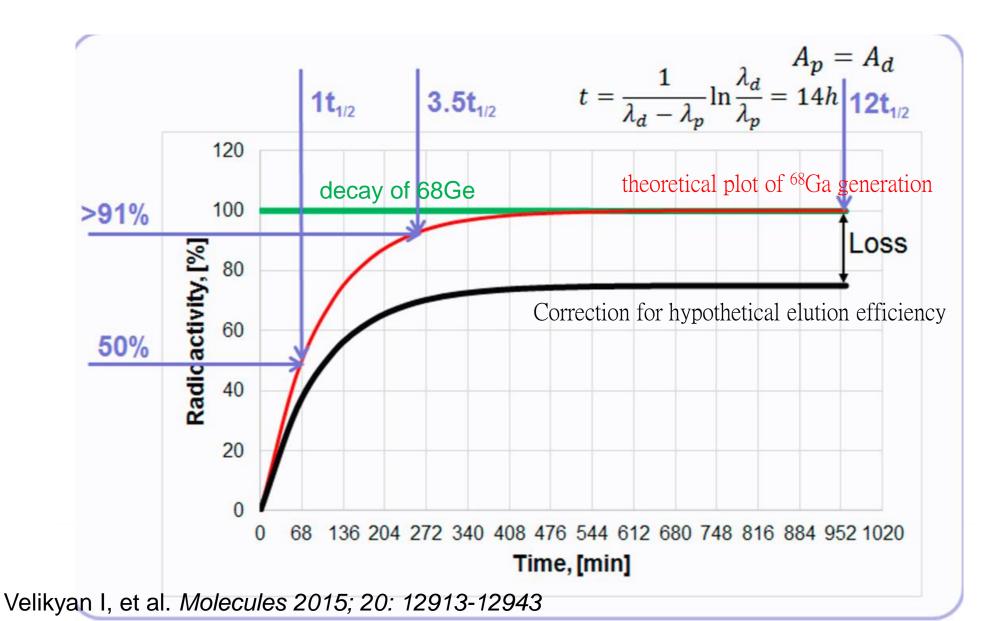
Needs drugs labeled with positron-emitting radioisotopes (PET drugs).

#### Gallium (Ga; 鎵)

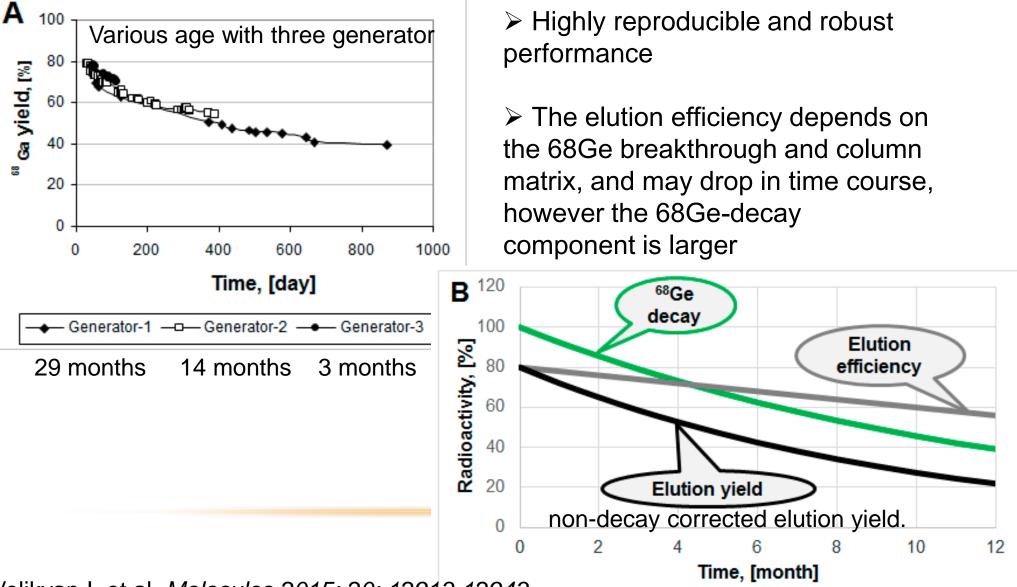



#### Gallium (Ga-68)

生產:
 1. 在68Ge/68Ga Generator母核68Ge衰變成68Ga
 2. 迴旋加速器生產


- 物理半衰期: 67.71分鐘
- 衰變模式: β\*衰變
- 主要γ能量: 兩道511 KeV 互毁光子




#### 68Ge/68Ga Generator



#### Equilibrium with <sup>68</sup>Ge decay and <sup>68</sup>Ga accumulation



#### <sup>68</sup>Ge/<sup>68</sup>Ga Generator elution efficiency



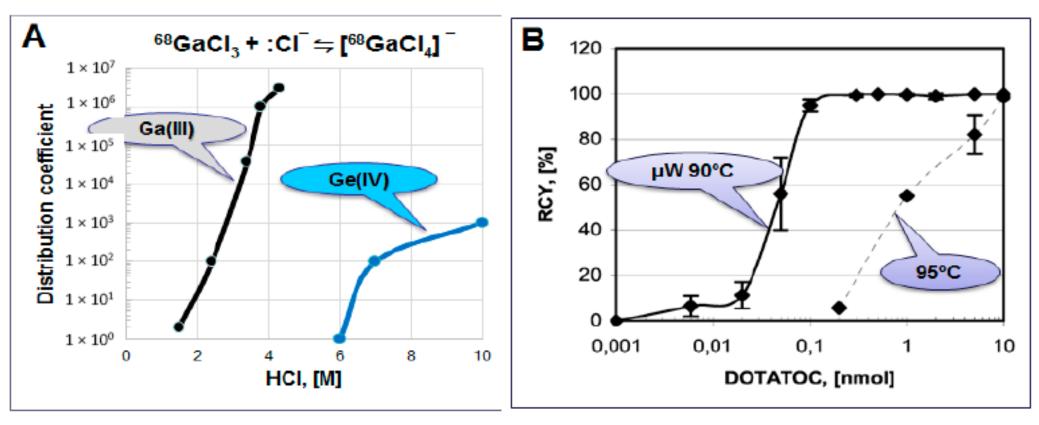
#### <sup>68</sup>Ge/<sup>68</sup>Ga Generator Column

1. Radiation resistance; 2.chemical stability of the column material; 3.eluate sterility;
 4.apyrogenecity; 5. <sup>68</sup>Ge breakthrough; 6.eluent type; 7. elution profile.

Most of the generators use acidic eluent since it provides cationic Ga(III) for the further direct chemistry.

Various sorbents and respective eluents used in column based <sup>68</sup>Ge/<sup>68</sup>Ga generators.

| <sup>68</sup> Ge/ <sup>68</sup> Ga Generator Column Matrix                                       |                                                      |  |  |  |  |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------|--|--|--|--|
| Inorganic (Eluent) Wildly used for                                                               | or less Organic (Eluent)                             |  |  |  |  |
| radiolysis                                                                                       | N-methylglucamine                                    |  |  |  |  |
| SnO <sub>2</sub> (1 M HCl) 95% of <sup>68</sup> Ga in<br>2 mL                                    | (0.1 M HCl; 0.1 M NaOH; citrate; EDTA)               |  |  |  |  |
| $TiO_2 (0.1 \text{ M HCl})^2$                                                                    | Pyrogallol-formaldehyde (0.3 M HCl)                  |  |  |  |  |
| CeO <sub>2</sub> (0.02 M HCl)                                                                    | Nanoceria-polyacrylonitrile (0.1 M HCl)              |  |  |  |  |
| ZrO <sub>2</sub> (0.1 M HCl)                                                                     | <sup>68</sup> Ge breakthrough of <10 <sup>-5</sup> % |  |  |  |  |
| Zr-Ti ceramic                                                                                    |                                                      |  |  |  |  |
| (0.5 M NaOH/KOH; 4 M HCl; acetate; citrate) <sup>68</sup> Ge breakthrough of <10 <sup>-3</sup> % |                                                      |  |  |  |  |
| Nano-zirconia (0.01 M HCl)                                                                       | -                                                    |  |  |  |  |


# Basic methods of 68Ge/68Ga generator eluate utilization.

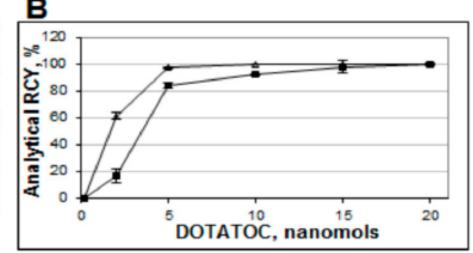
| Method                             | Eluent                                | Volume        | <b>Cation Impurity Reduction</b>                           | <sup>68</sup> Ge Elimination |  |  |  |
|------------------------------------|---------------------------------------|---------------|------------------------------------------------------------|------------------------------|--|--|--|
| Full volume, 5–8 mL                | H <sub>2</sub> O/HCl                  | $>5000~\mu L$ | >5000 µL Not purified                                      |                              |  |  |  |
| Fractionation, 1 mL                | H <sub>2</sub> O/HCl                  | 1000 μL       | Not purified                                               | none                         |  |  |  |
|                                    | Eluate Concentration and Purification |               |                                                            |                              |  |  |  |
| Anion avalance                     | ШО                                    | 200T          | One step: Al (>99%), In (>99%),                            | Complete                     |  |  |  |
| Anion exchange                     | $H_2O$                                | 200 μL        | Ti (90%)                                                   |                              |  |  |  |
|                                    | A astana/UC1                          | 4001          | Two steps: Zn (×10 <sup>5</sup> ), Ti (×10 <sup>2</sup> ), | $10^4$ fold                  |  |  |  |
| Cation anahanaa                    | Acetone/HCl 400 µL                    |               | Fe (×10)                                                   | 10, 1010                     |  |  |  |
| Cation exchange                    | NaCl/HCl                              | 500 μL        | NA                                                         | NA                           |  |  |  |
|                                    | EtOH/HC1                              | 1000 μL       | Two steps: Ti (11%), Fe (×7)                               | 400 fold                     |  |  |  |
| Combined cation/anion •Acetone/HCl |                                       | 1000T         | NI A                                                       | 10 <sup>5</sup> fold         |  |  |  |
| exchange                           | ●H <sub>2</sub> O/HCl                 | 1000 μL       | NA                                                         | 10-1010                      |  |  |  |

#### <sup>68</sup>GaCl<sub>3</sub> and ligand labeling chemistry

> (A) Distribution coefficient D for the adsorption of Ga(III) and Ge(IV) chloride anions on an anion-exchange resin;

> (B) Influence of the DOTA-TOC amount on the decay-corrected radiochemical yield of the 68Ga complexation reaction in HEPES buffer system using the full available <sup>68</sup>Ga radioactivity in 200 µL volume obtained after the pre-concentration and purification step. Solid line: 1 min microwave heating at 90 ± 5 °C, dashed line: 5 min conventional heating at 95 °C.



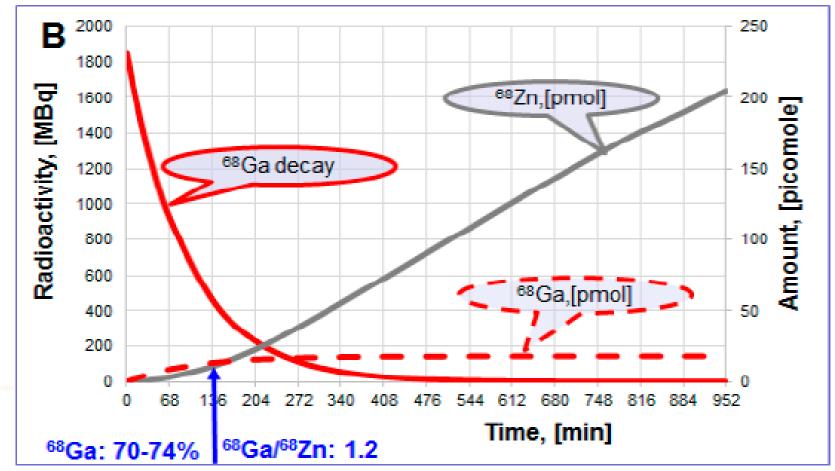

Velikyan I, et al. *Molecules 2015; 20: 12913-12943* 

#### <sup>68</sup>Ge/<sup>68</sup>Ga Generator Eluate quality and chemistry

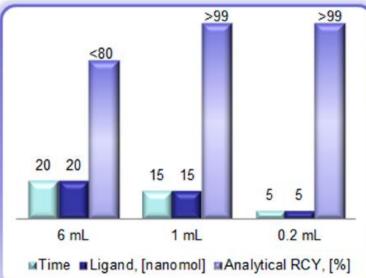
| pH  | Species                                                               | Solubility |
|-----|-----------------------------------------------------------------------|------------|
| 0-3 | Ga <sup>3+</sup> ; [Ga(H <sub>2</sub> O) <sub>6</sub> ] <sup>3+</sup> | soluble    |
| 3-7 | Ga(OH) <sub>3</sub>                                                   | insoluble  |
| >7  | [Ga(OH)4]                                                             | soluble    |

(A) Table showing formation of various species dependent on pH;

- (B) Influence of the buffering system ( sodium acetate, Δ HEPES) on the 68Ga radioactivity incorporation for different DOTA-TOC quantities (1 min microwave heating at 90 ± 5 °C). The reaction was conducted using the 1 mL peak fraction of the original generator eluate;
- (C) Table comparing characteristics of acetate and HEPES buffers.

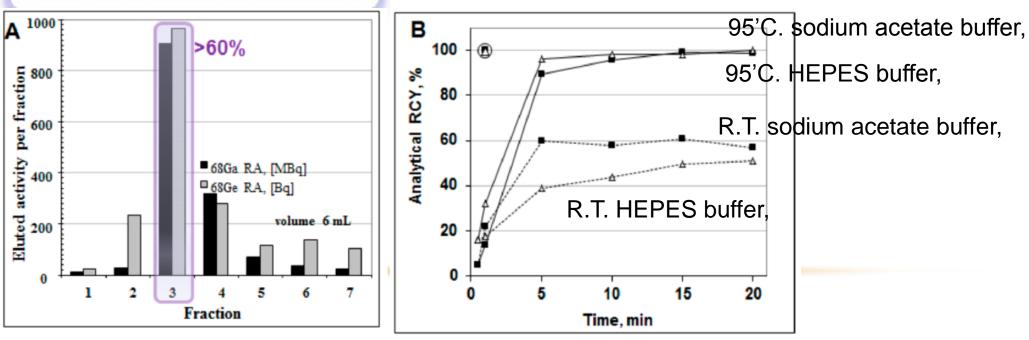



С


|                                | HEPES buffer      | Acetate buffer |  |
|--------------------------------|-------------------|----------------|--|
| Biocompatible                  | +                 | +              |  |
| Toxicology (LD <sub>50</sub> ) | Quail: 316 mg/kg) | Rat: 90 mL/kg  |  |
| Stabilizing agent              | +                 | +              |  |
| Transchelation                 | +                 | +              |  |
| pН                             | +                 | +              |  |
| Human use                      | -                 | +              |  |
| Purification                   | Required          | Not required   |  |
| QC                             | Required          | Not required   |  |

#### <sup>68</sup>Ge/<sup>68</sup>Ga Generator Eluate quality and chemistry

- (A) Zn(II) forms thermodynamically stable complex with DOTA derivatives and interferes 68Ga-labeling reaction, especially in the excessively high concentration;
- (B) Theoretical graphs (50 mCi generator) showing 68Ga decay (MBq) and accumulation of radioactive 68Ga and stable Zn(II) in picomoles within the time frame of secular equilibrium.




#### <sup>68</sup>Ge/<sup>68</sup>Ga Generator Eluate quality and chemistry



Reaction heating time (min), ligand amount (DOTA-TOC, (nanomole)), and analytical radiochemical yield (%) of the [68Ga]Ga-DOTA-TOC synthesis.

Fraction 3 (1 mL) contains over 60% of the available 68Ga radioactivity; The profiles for the 68Ga elution and the 68Ge breakthrough are similar; the 68Ge breakthrough is ~10<sup>-3</sup>%.
 1. Eluate volume, 2. HCl eluent molarity, 3. content of metal cationic impurities influence the efficiency of 68Ga-labeling chemistry. 4.pH prevention of Ga(III) precipitation and colloid formation, 5. radiolysis of vector molecules,



Velikyan I, et al. Molecules 2015; 20: 12913-12943

#### <sup>68</sup>Ge/<sup>68</sup>Ga Generator Development

- Efficient separation of the daughter and parent elements due to their different chemical properties;
- Physical half-life of parent allowing rapid daughter regrowth after generator elution; stable granddaughter with no radiation dose to the patient;
- Long shelf-life; effective shielding of the generator, minimizing radiation dose to the user and expenses of hot cells; sterile and pyrogen-free output of the generator
- Mild and versatile chemistry of the daughter 68Ga amenable to automation and kit preparation.

Table 3. Milestones of <sup>68</sup>Ge/<sup>68</sup>Ga generator development.

| Time Period                                                                                          | Milestone                                                                                        |  |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|
| 1950-1970                                                                                            | First <sup>68</sup> Ge/ <sup>68</sup> Ga generator                                               |  |
| 1950-1970                                                                                            | Clinical applications: <sup>68</sup> Ga-EDTA; <sup>68</sup> Ga-citrate; <sup>68</sup> Ga-colloid |  |
| 1970–1980 Further development of <sup>68</sup> Ge/ <sup>68</sup> Ga generator: <sup>68</sup> Ga(III) |                                                                                                  |  |
| 1990s                                                                                                | Commercial generator: <sup>68</sup> Ga(III)                                                      |  |
| 2000s                                                                                                | Clinical use with advent of SST ligands                                                          |  |
| 2011                                                                                                 | GMP generators                                                                                   |  |
| 2014                                                                                                 | Marketing authorization                                                                          |  |

#### Commercial <sup>68</sup>Ge/<sup>68</sup>Ga Generator

1. long shelf-life of 1–2 year; 2. stable column matrixes; 2. cationic chemical form of 68Ga(III)
 Variation in the1. molarity of HCI elution; 2.metal cation content; 3. mental cation content and <sup>68</sup>Ge breakthrough.

|                   | Eckert & Ziegler<br>Cyclotron Co. Ltd. | Eckert & Ziegler IGG100<br>and IGG101 GMP;<br>Pharm. Grade |  | I.D.B. Holland B.V. | Isotope<br>Technologies<br>Garching |                                             |                       |
|-------------------|----------------------------------------|------------------------------------------------------------|--|---------------------|-------------------------------------|---------------------------------------------|-----------------------|
|                   |                                        |                                                            |  |                     |                                     |                                             |                       |
| Column matrix     | TiO <sub>2</sub>                       | TiO <sub>2</sub>                                           |  | SnO <sub>2</sub>    | SiO <sub>2</sub> /organic           |                                             |                       |
| Eluent            | 0.1 M HC1                              | 0.1 M HCl                                                  |  | 0.1 M HCl 0.6 M HCl |                                     | 0.05 M HC1                                  |                       |
| 68Ge breakthrough | <0.005%                                | <0.001%                                                    |  | ~0.001%             | <0.005%                             |                                             |                       |
| Eluate volume     | 5 mL                                   | 5 mL                                                       |  | 6 mL                | 4 mL                                |                                             |                       |
| Chemical impurity | Ga: <1 µg/mC1<br>Ni < 1µg/mC1          | Fe: <10 μg/GBq<br>Zn: <10 μg/GBq                           |  |                     |                                     | <10 ppm (Ga, Ge, Zn,<br>Ti, Sn, Fe, Al, Cu) | Only Zn from<br>decay |
| Weight            | 11.7 kg                                | 10 kg 14 kg                                                |  | 26 kg               | 16 kg                               |                                             |                       |

#### Commercial <sup>68</sup>Ge/<sup>68</sup>Ga Generator

- > long shelf-life may raise concern with regard to
  - 1. Radiolytic stability of column material,
  - 2. Sterility of the eluate,
  - 3. Long-lived <sup>68</sup>Ge waste management.



#### **BIFUNCTIONAL CHELATING AGENT**

CL

375

#### Effanctional <sup>40</sup>Se chelators

Table 1 (continued)

Islis 1 Overview on Structures of the Sole Chelate Chelators (CD, Their Thermodynamic Complex Formation Stability Constant (log K) and Typical Reaction Parameters to Actieve the High-Radiochemical Yelds (RCY) Mentioned of the <sup>®</sup>Ga Ligand Complexes. Also, Those Derivatives Are Included, Where <sup>®</sup>Ga Was Applied Instead of <sup>®</sup>Ga.

|                            |                      | ieve the High-Radiochemical Yelds (RCY) Mentioned of the "Ga Li<br>"Ga Was Applied Instead of "Ga. | gand Cor  | nplexes. |                                      |       | Reaction Temperature)                      |
|----------------------------|----------------------|----------------------------------------------------------------------------------------------------|-----------|----------|--------------------------------------|-------|--------------------------------------------|
| CL.                        | log K <sub>Cat</sub> | Typical Radiolabeling (Buffer, pH, Reaction Time, and Reaction Temperature)                        | RCY<br>60 | Ref      | HOUCE COOH                           | 22.2  | 1 Macdium acatate (pH = 4.5), 10 min, RT   |
|                            | 24.3                 |                                                                                                    |           | 7        | HODE                                 |       |                                            |
| DTPA                       | 28.6                 | 0.1 M ammonium acetais (pH = 4.5), S min, RT                                                       | 98        | 89       | AAZTA                                | 21.7  | 0.2 M sodum apstate, 1 min, RT             |
| 0 04                       | NH2                  |                                                                                                    |           |          | HOOC I                               |       |                                            |
|                            | 28.1                 | 0.1 M sodum acetaie, 10 min, RT                                                                    | 97        | 10,11    | HODE                                 |       |                                            |
| Y                          |                      |                                                                                                    |           |          | DATA"                                | -     | 0.1 M sodum acetate, 35 min, 12 85°C       |
| H <sub>a</sub> dedpa<br>CH | 38.5                 | 2.1 M HEFES buffer (pH = 4.2), 4 min, $\approx$ 95 C/RT                                            | 90        | 12,13    | NH Jarren                            |       |                                            |
| HO W W OH                  |                      |                                                                                                    |           |          | ( NHHN                               |       |                                            |
| ° ">>>                     |                      |                                                                                                    |           |          |                                      |       |                                            |
| HBED                       | -                    | 1 Mammonium acetate, 5 min, RT                                                                     | 90        | 14       | HÁ                                   |       |                                            |
| Sale M                     |                      |                                                                                                    |           |          | (NH <sub>2</sub> ) <sub>2</sub> -sar | -     | 2 Macdium acetate (pH = 5), 5 min, RT      |
| INIFIL OF                  |                      |                                                                                                    |           |          | my Cym                               |       |                                            |
| 2 mil Hatta                |                      |                                                                                                    |           |          | ~£ £                                 |       |                                            |
| Han .                      |                      |                                                                                                    |           |          | يت ير                                |       |                                            |
| H <sub>5</sub> THP-Ac      | 21.3                 | 1 MHEPES luffer (pH = 4.8), 5 min, ~ 95 °C                                                         | >90       | 2.15     | Fusarinine C                         | -     | sodium acetate (cH = 4.9, 45 min, to 120°C |
| ᠉ᡔᢩᢙ᠋                      |                      |                                                                                                    |           |          | - Child                              |       |                                            |
| "PUK"                      |                      |                                                                                                    |           |          | Sen in                               |       |                                            |
| DOTA                       | 31.0                 | 1 MHEPES (cH = 3.9, 10 min, $\approx 95^\circ C$                                                   | >95       | 1,16     | - Just                               |       |                                            |
|                            |                      |                                                                                                    |           |          | on on other                          |       |                                            |
| NOTA                       |                      |                                                                                                    |           |          | Porphyrins                           |       |                                            |
|                            |                      |                                                                                                    |           |          | MM mitmaker BT monitement            | an an |                                            |

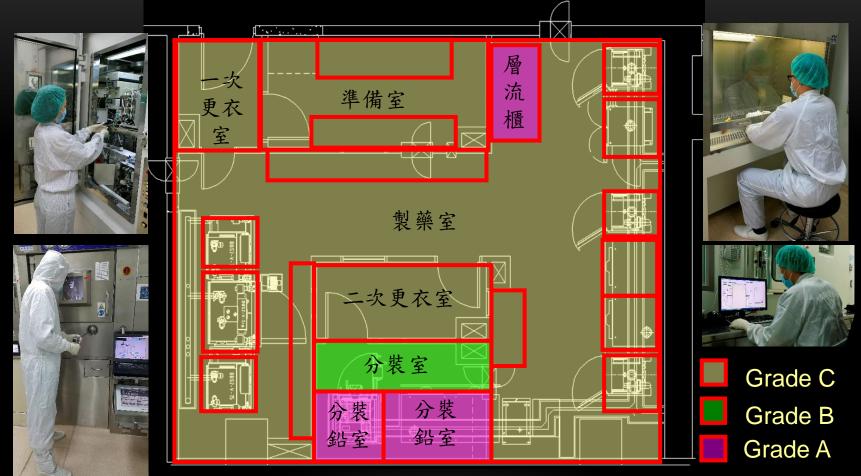
ie, 1 min, BT >95 19 6e.35 min. v 85°C GR. 20 (oH = 5), 5 min, RT 21 98 = 4.5, 45 min, a 120°C0MW0 33 22

RCY

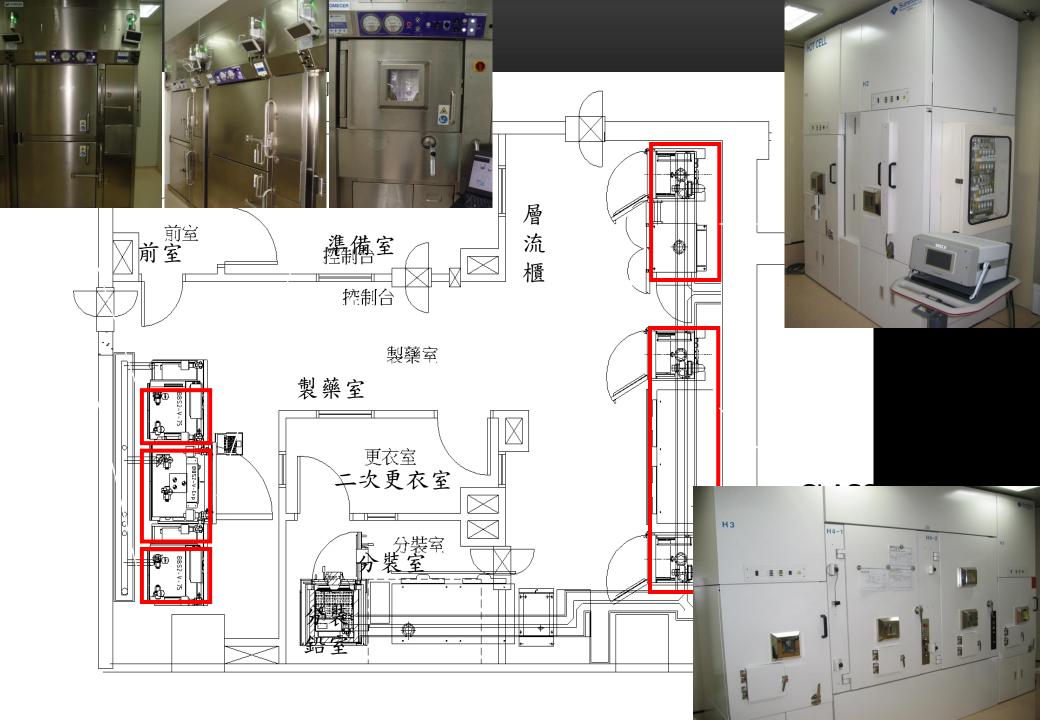
>95

60

Ref


17.18

log Kost, Typical Radiolabeling (Buffer, pH, Reaction Time, and

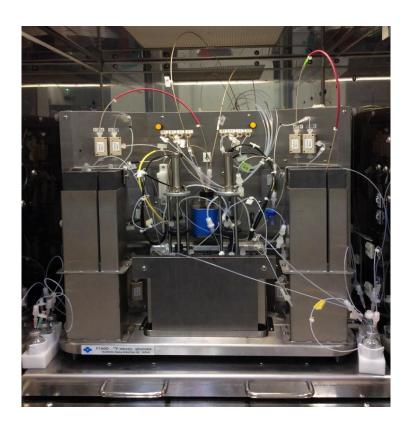

# HBED-CC BIFUNCTIONAL CHELATING AGENT

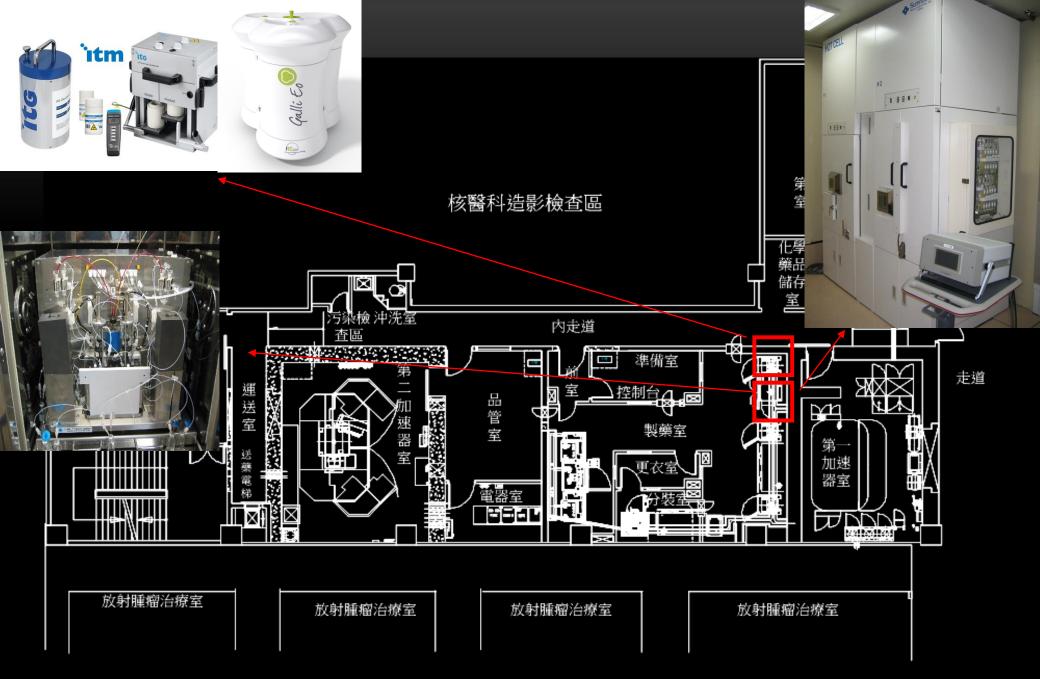
- Acyclic radiometal chelator N,N'-bis [2-hydroxy-5-(carboxyethyl)benzyl] ethylenediamine-N,N'-diacetic acid (HBED-CC) was first coupled with tetrazine and after successful synthesis, the compound was labeled with 68Ga.
- Aim of the study was to discover the potential of this compound to pass the cell membrane and to determinate its properties. The synthesis of HBED-CC-tetrazine was successfully optimized with good yields in a range of 65-85 %.
- Radiosynthesis of [68Ga] Ga-HBED-CC-tetrazine was also optimized using different temperatures, reaction times and precursor amounts. All conditions resulted in good radiochemical yields. Optimized conditions for radiolabeling turned out to be in 85 degrees for 20 minutes which resulted in 97 % of radiochemical yield with over 98 % radiochemical purity. The properties of the labeled compound [68Ga] Ga-HBED-CC-tetrazine were tested, such as lipophilicity and the stability of the compound in a presence of iron.



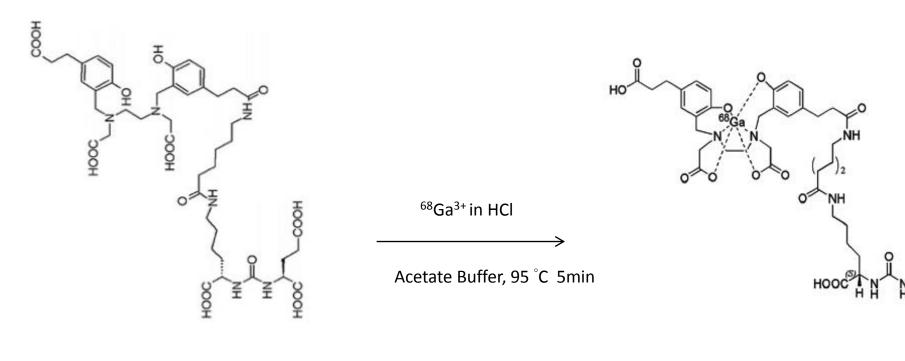


一次更衣室: 壓差≥10 Pa; 溫度 19~27°C; 溼度 30~70%
製藥室與準備室: 壓差≥ 20 Pa; 溫度 19~27°C; 溼度 30~70%
二次更衣室: 壓差≥ 30 Pa; 溫度 19~27°C; 溼度 30~70%
分裝室: 壓差≥ 40 Pa; 溫度 19~27°C; 溼度 30~70%





<sup>68</sup>Ga-PSMA-11合成設備

#### 發生器<sup>68</sup>Ge/<sup>68</sup>Ga Generator



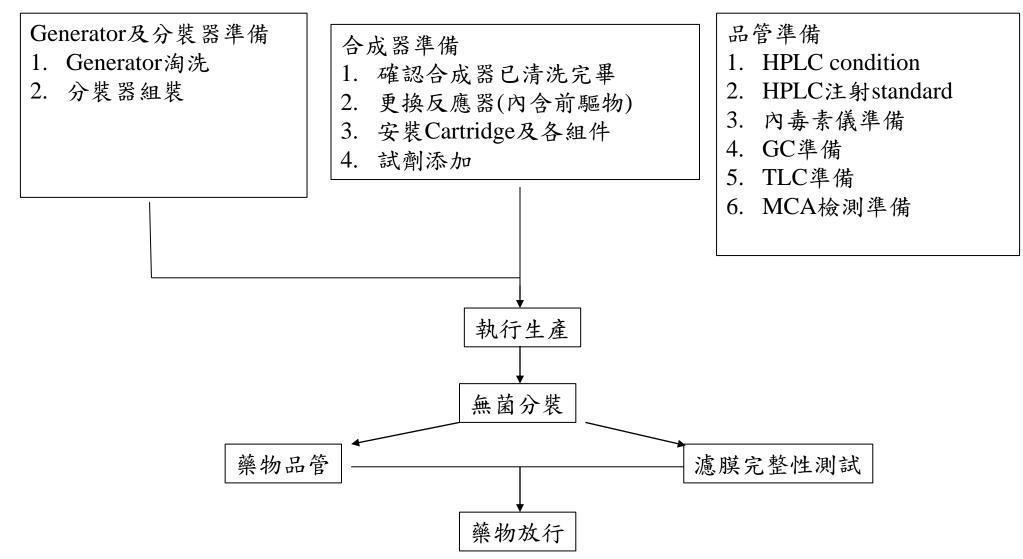

#### 合成器: Sumitomo F100D Module B side



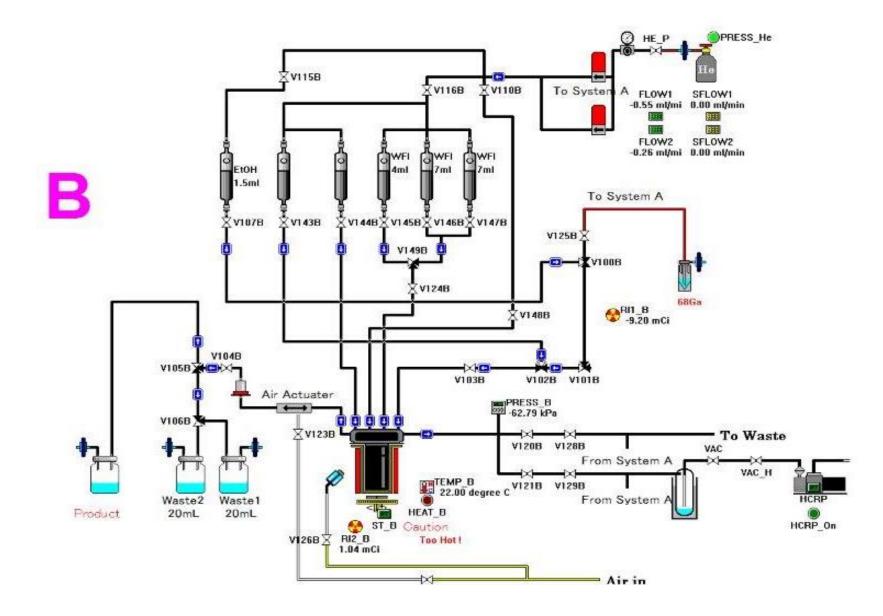


<sup>68</sup>Ga-PSMA-11合成反應




PSMA-11 (10µg)

<sup>68</sup>Ga-PSMA-11 acetate


COOH

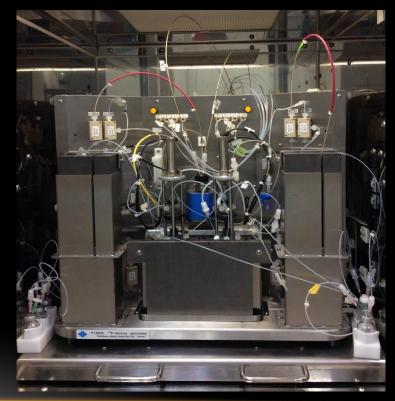
COOH

#### <sup>68</sup>Ga-PSMA-11調製步驟說明



#### <sup>68</sup>Ga-PSMA-11自動合成系統




#### 2017年開始自動化生產

- ➢ ITG 68Ge/68Ga Generator
- Sodium Acetate Buffer
- ➤ Yield=44.63 ±11.20% (n=175)





- IRE 68Ge/68Ga Generator
- Sodium Acetate Buffer
- ➤ Yield=66.25 ±14.73% (n=30)



#### <sup>68</sup>Ga-PSMA-11檢驗規格(QC)

| ltems                                                        | Specification                                                                          |  |  |  |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|--|
| Appearance                                                   | Clear, colorless solution with<br>no visible particulate matter                        |  |  |  |
| Ethanol content                                              | $\leq$ 10 %                                                                            |  |  |  |
| рН                                                           | 4.0 < pH < 8.0                                                                         |  |  |  |
| Radiochemical purity                                         | ≥ 95%                                                                                  |  |  |  |
| Chemical identity (API)                                      | Relative retention with reference Standard= about 1.0 RRT = $1.00 \pm 0.05$ (95%-105%) |  |  |  |
| Radiochemical impurity ( <sup>68</sup> Ga in colloidal form) | ≤ 3%                                                                                   |  |  |  |
| Radionuclidic identity (68Ga)                                | 62 min ≤ T <sub>1/2</sub> ≤ 74 min                                                     |  |  |  |
| Strength                                                     | ≥ 0.13 mCi/mL                                                                          |  |  |  |
| Radionuclidic Purity                                         | ≥ 99.9% in 0.511 MeV, 1.077 MeV, 1.022 MeV, 1.883 MeV and Compton scatter              |  |  |  |
| Radionuclidic impurity (examined for at least 48 h)          | Radionuclidic<br>impurities ≤0.001%                                                    |  |  |  |
| Bacterial endotoxin                                          | $\leq$ 11.6 EU/mL                                                                      |  |  |  |
| Sterility                                                    | Meet the requirements of the test                                                      |  |  |  |





內毒素測定儀(LAL)



放射活度測定儀



內毒素測定儀(LPS)



液相層析儀




放射薄層分析儀 多頻道分析儀



氣相層析儀

# Thank you for your attention

